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Introduction

So far, we have estimated means conditional on 1 X variable
E [Y |X ] → E [Y |X1]

Linear

Nonlinear, including higher-order polynomials

Non-parametric

Now will consider conditioning on multiple variables

E [Y |X ] → E [Y |X1,X2, ...,XK ]



Motivation

Why use multiple X variables?
Because you can!

Useful to have more information when estimating a mean

May strengthen the causal interpretation of coefficients on individual
variables



Quick discussion of causality

Have not discussed causation yet

Will discuss in much more detail later

For now, suffice to say that this probably does not give the right
causal effect:

E [Earnings|Education] = βU
0 + βU

1 · Education

Why not?

Maybe more “connected” people get more schooling and have better
access to jobs

Maybe “smarter” people find it easier to advance in school and excel at
work

In either case, people with more education will have higher earnings,
even without any causal relationship
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A multivariate regression function

E [Earningsi |Xi ] = βM
0 + βM

1 · Educationi + βM
2 · AFQTi

OLS chooses β̂M
0 , β̂M

1 , and β̂M
2 such that:

E [ûi · Educationi ] = 0
E [ûi · AFQTi ] = 0

E [ûi ] = 0

where ûi = Yi − [β̂M
0 + β̂M

1 · Educationi + β̂M
2 · AFQTi ]
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Interpreting a multivariate regression function

E [Earningsi |Xi ] = βM
0 + βM

1 · Educationi + βM
2 · AFQTi

Let’s suppose AFQT is a perfect measure of how “smart” someone is

Not true...

How can we interpret βM
1 ?



“Holding constant” interpretation

E [Earningsi |Xi ] = βM
0 + βM

1 · Educationi + βM
2 · AFQTi

If AFQT stays constant but Education increases by 1 year, how much
does expected Earnings increase?

βM
1

βM
1 is the (predictive) effect of Education “holding AFQT constant”

Can think of a partial derivative from calculus:

∂E [Earningsi |Educationi ,AFQTi ]

∂Educationi
= βM

1
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“Holding constant” interpretation (2)

E [Earningsi |Xi ] = βM
0 + βM

1 · Educationi + βM
2 · AFQTi

Can we think of βM
1 as being the causal effect of education now?

Probably not

Education might have associations with factors other than AFQT that
drive βM

1

Still, this is cleaner than the univariate case

At least βM
1 is (mostly) not being driven by AFQT
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“Residual regression” interpretation

E [Earningsi |Educationi , AFQTi ] = β̂M
0 + β̂M

1 · Educationi + β̂M
2 · AFQTi

Now consider the auxiliary regression of one regressor on another:

E [Educationi |AFQTi ] = α̂0 + α̂1 · AFQTi ,

and let ûX1
i be the residual from this regression.

You can (but won’t have to) show the following:

E [Earningsi |û
X1
i ] = κ0 + β̂M

1 · ûX1
i
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“Residual regression” interpretation (2)

E [Yi |Xi ] = β̂M
0 + β̂M

1 · X1i + β̂M
2 · X2i

In words: βM
1 (or any other βM) from a multivariate regression can be

estimated as follows:

“Residualize” X1 on all other regressors (call it ûX1

i )

Regress Y on ûX1

i : coefficient will be same βM
1 from above equation

Key interpretation: βM
1 measures the effect on Y of the portion

of X1 that cannot be explained by other variables
βM
1 is “identified off of” the “residual variation” of X1

Similarly, βM
2 is identified off of the residual variation of X2



Income and education regressions

Outcome: Annual earnings (1,000$s)
Univariate Multivariate

Constant -75.7 -53.2
Education 10.1 6.7
AFQT 0.5
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Residual regression
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Residual regression
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Income and education regressions

Outcome: Annual earnings (1,000$s)
Univariate Multivariate

Constant -75.7 -53.2
Education 10.1 6.7
AFQT 0.5



Omitted Variable “Bias”

Frequently, we don’t have data on every variable we’d like

For instance, suppose we don’t observe AFQT for this regression:

E [Incomei |Educationi ,AFQTi ] = βM
0 + βM

1 · Educationi + βM
2 ·AFQTi

We then have no choice but to estimate this equation:

E [Incomei |Educationi ] = βU
0 + βU

1 · Educationi

Want to consider whether βU
1 = βM

1 .

Seems unlikely: βU
1 is estimated with all variation in Education while

βM
1 only uses residual variation

It turns we can be more precise about this.



Omitted Variable “Bias” (2)

E [Incomei |Educationi ,AFQTi ] = βM
0 + βM

1 · Educationi + βM
2 · AFQTi

E [Incomei |Educationi ] = βU
0 + βU

1 · Educationi

Consider the following auxiliary regression:

E [AFQTi |Educationi ] = δ0 + δ1 · Educationi

It then follows that:

E [Incomei |Educationi ] = βM
0 + βM

1 · Educatoni + βM
2 · E [AFQTi |Educationi ])

= βM
0 + βM

1 · Educationi + βM
2 · (δ0 + δ1 · Educationi )

= (βM
0 + βM

2 · δ0) + (βM
1 + βM

2 · δ1) · Educationi

So βU
1 = βM

1 + βM
2 · δ1 ̸= βM

1 (typically)
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Omitted Variable “Bias” results

βU
1 = βM

1 + βM
2 · δ1

“Bias” from omitting AFQT (βU
1 − βM

1 ) is δ1 · βM
2 .

Breakdown:
AFQT-Education
relation is positive

(δ1 > 0)

AFQT-Education
relation is negative

(δ1 < 0)
AFQT increases income

(βM
2 > 0)

AFQT decreases income

(βM
2 < 0)
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Omitted Variable “Bias” example

Outcome: Earnings AFQT

Constant -75.68 -53.17 -41.83
Education 10.06 6.73 6.17
AFQT 0.54

10.06 = 6.73 + 0.54 · 6.17
βU
1 = βM

1 + βM
2 · δ1



Omitted Variable “Bias” discussion

OV“B” result is extremely useful in practice!

Even though you don’t observe βM
2 or δ1, you can sometimes use the

OV“B” logic to get a sense of whether your “bias” is positive or
negative

“Bias” is a loaded word

Sometimes, the correct regression is the one that omits a particular
variable!



“OVB for SEs”

Adding/removing a variable from a regression doesn’t just change the
point estimates of the other coefficients

It changes the standard errors, too!

In case of homoskedasticity, there are two countervailing effects:

An additional variable reduces residuals and therefore shrinks SEs

An additional variable reduces the amount of residual variation in X
and increases SEs

Overall impact on SEs is ambiguous: depends on the strength of
those two effects

With heteroskedasticy, this stark tradeoff is not technically
guaranteed, but in practice it still typically holds
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“OVB for SEs” results

New X is very
correlated with old X

New X is not very
correlated with old X

New X is a weak
predictor of Y

New X will increase
SE on old X Ambiguous

New X is a strong
predictor of Y Ambiguous

New X will decrease
SE on old X



“OVB for SEs” example

Outcome: ∆ GDP

∆ G -0.87 -0.96 -0.83
(SE) (0.89) (1.04) (0.82)

Lagged ∆ G 0.29
(0.76)

Lagged ∆ GDP -0.14
(0.30)

Variance of û 20,322 20,287 19,927
Residual variation of ∆ G 442 401 442

Note: constant term not shown

Tip: Adding the lagged outcome variable is often a good trick – good
explanatory power, often not as correlated with other regressors



“OVB for SEs” takeaways

Takeaway: When considering controls, don’t just think about bias –
SEs matter, too!

A control that addresses bias might blow up the SE and make the
regression useless (if the X s are highly correlated)

A control variable that doesn’t address bias might reduce the SE and
be super-useful



Multicollinearity

Consider the following regression model:

Incomei = β̂0 + β̂1 · Agei + β̂2 · CurrentYeari + β̂3 · BirthYeari + ûi

Modeling income as a linear trend of age, time, and birth cohort

Note that Agei = CurrentYeari - BirthYeari

This model cannot be estimated!

In a model with perfect “multicollinarity” – one regressor is a linear
combination of other regressors – the coefficients are not uniquely
identified
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Multicollinearity example



Intuition for multicollinearity

Incomei = β̂0 + β̂1 · Agei + β̂2 · CurrentYeari + β̂3 · BirthYeari + ûi

Interpretation 1: holding constant

You can’t look at a change in Age while keeping CurrentYear and
BirthYear constant

If Age changes, one of the others must as well!

Interpretation 2: residual regression

A regression of Age on CurrentYear and BirthYear will explain Age
perfectly; all residuals will be 0

Therefore, there is no residual variation to identify the effect of Age on
Income → SE will be ∞



Intuition for Multicollinearity
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Intuition for multicollinearity (2)

Incomei = β̂0 + β̂1 · Agei + β̂2 · CurrentYeari + β̂3 · BirthYeari + ûi

Agei = CurrentYeari − BirthYeari

Regression equation can be rewritten as:

Incomei = β̂0 + (β̂2 + β̂1)︸ ︷︷ ︸
3

·CurrentYeari + (β̂3 − β̂1)︸ ︷︷ ︸
2

·BirthYeari + ûi

Each of these 2 sets of parameters are consistent with the results
above:

β̂1 = 1, β̂2 = 2, β̂3 = 3

β̂1 = 2, β̂2 = 1, β̂3 = 4

I.e. we don’t know how to pick the single solution

The model is asking something nonsensical, and so OLS fails
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Each of these 2 sets of parameters are consistent with the results
above:

β̂1 = 1, β̂2 = 2, β̂3 = 3

β̂1 = 2, β̂2 = 1, β̂3 = 4

I.e. we don’t know how to pick the single solution

The model is asking something nonsensical, and so OLS fails



Multicollinearity in practice

Your software will tell you if you have perfect multicollinearity
You can “fix” it by removing one of the variables

This often comes up with “indicator variables” which we’ll discuss soon

Before you proceed, you should pause to think through whether your
model makes sense...

Subtler issues arise with high-but-imperfect multicollinearity

Suppose your regressors are Age, YearsEducation, YearsWorking

There is a very tight relationship between these 3 variables, though not
perfect because some people take gap years, maternity leave,
unemployment, etc.

There will be little residual variation and likely high SEs!

May want to consider dropping a variable
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