Multivariate Regression

Econ 2560, Fall 2023

Prof. Josh Abel

(Chapters 6, 7.1)



Introduction

@ So far, we have estimated means conditional on 1 X variable
o E[YI|X] — E[Y|X{]

@ Linear
@ Nonlinear, including higher-order polynomials
o Non-parametric

@ Now will consider conditioning on multiple variables
o E[Y|X] = E[Y|X1, X, ..., Xk]



@ Why use multiple X variables?
o Because you can!
o Useful to have more information when estimating a mean

e May strengthen the causal interpretation of coefficients on individual
variables



Quick discussion of causality

@ Have not discussed causation yet
o Will discuss in much more detail later

@ For now, suffice to say that this probably does not give the right
causal effect:

o E[Earnings|Education] = By + Y - Education
@ Why not?



Quick discussion of causality

@ Have not discussed causation yet
o Will discuss in much more detail later
@ For now, suffice to say that this probably does not give the right
causal effect:
o E[Earnings|Education] = By + Y - Education
@ Why not?
o Maybe more “connected” people get more schooling and have better

access to jobs

o Maybe “smarter” people find it easier to advance in school and excel at
work

e In either case, people with more education will have higher earnings,
even without any causal relationship



A multivariate regression function

E[Earnings;| X;] = B + 8 - Education; + 8Y - AFQT;



A multivariate regression function

E[Earnings;| X;] = B + 8 - Education; + 8Y - AFQT;

@ OLS chooses BA(’)V’ B{V’ and BAQ/’ such that:

E|[d; - Education;] =0
E[d; - AFQT;] =0
E[g]=0
where ; = Y; — [36\” + 3{‘” - Education; + BAQ/’ -AFQT/]



Interpreting a multivariate regression function

E[Earnings;|X;] = BY + BM - Education; + ) - AFQT;

@ Let's suppose AFQT is a perfect measure of how “smart” someone is
o Not true...

o How can we interpret 517?



“Holding constant” interpretation

E[Earnings;|Xi] = 8 + B - Education; + 8Y - AFQT;

o If AFQT stays constant but Education increases by 1 year, how much
does expected Earnings increase?
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“Holding constant” interpretation

E[Eamings;|X;] = B + 8 - Education; + 8Y - AFQT;

o If AFQT stays constant but Education increases by 1 year, how much
does expected Earnings increase?

° M
o M is the (predictive) effect of Education “holding AFQT constant”

@ Can think of a partial derivative from calculus:
OE[Earnings;|Education;, AFQT]
OEducation;

= M



“Holding constant” interpretation (2)

E[Earnings;|X;] = B + 8 - Education; + 8Y - AFQT;

o Can we think of B as being the causal effect of education now?



“Holding constant” interpretation (2)

E[Earnings;|X;] = B + 8 - Education; + 8Y - AFQT;

o Can we think of B as being the causal effect of education now?

@ Probably not
e Education might have associations with factors other than AFQT that
drive g1
o Still, this is cleaner than the univariate case
o At least M is (mostly) not being driven by AFQT



“Residual regression” interpretation

E[Earnings;|Education;, AFQT;] = 3 + M - Education; + 3 - AFQT;



“Residual regression” interpretation

E[Earnings;|Education;, AFQT;] = 3! + 3 - Education; + 3 - AFQT;

@ Now consider the auxiliary regression of one regressor on another:
E[Education;|AFQT;] = &o + &1 - AFQT;,

and let 0,?(1 be the residual from this regression.



“Residual regression” interpretation

E[Earnings;|Education;, AFQT;] = 3! + 3 - Education; + 3 - AFQT;

@ Now consider the auxiliary regression of one regressor on another:
E[Education;|AFQT;] = &o + &1 - AFQT;,
and let 0,?(1 be the residual from this regression.

@ You can (but won't have to) show the following:

E[Earnings;|07] = ko + BM - 0



“Residual regression” interpretation (2)

ELY:|X;]) = By + BY - Xui + BY - Xoi

@ In words: B{V’ (or any other 3M) from a multivariate regression can be
estimated as follows:
o “Residualize” X; on all other regressors (call it 4)

@ Regress Y on ﬁ,-xl: coefficient will be same 3M from above equation

o Key interpretation: ﬂ:{V’ measures the effect on Y of the portion
of X; that cannot be explained by other variables
o M is “identified off of’ the “residual variation” of X;

o Similarly, 3M is identified off of the residual variation of X,



Income and education regressions

Outcome: Annual earnings (1,0009s)
‘ Univariate Multivariate
Constant -75.7 -53.2
Education 10.1 6.7
AFQT 0.5
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Income and education

Earnings by education
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Income and education

Earnings by education
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Income and education regressions

Outcome: Annual earnings (1,0009s)
‘ Univariate Multivariate
Constant -75.7 -53.2
Education 10.1 6.7
AFQT 0.5




Education by AFQT
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Education by AFQT

Education by AFQT
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Education by AFQT

Education by AFQT
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Residual regression

Earnings by education
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Residual regression

Earnings by education
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Residual regression

Annual earnings (1,000$)
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Income and education regressions

Outcome: Annual earnings (1,0009s)
‘ Univariate Multivariate
Constant -75.7 -53.2
Education 10.1 6.7
AFQT 0.5




Omitted Variable “Bias”

@ Frequently, we don't have data on every variable we'd like

@ For instance, suppose we don't observe AFQT for this regression:
E[Income;|Education;, AFQT;] = 8§ + 8 - Education; + 8 - AFQT;
@ We then have no choice but to estimate this equation:
E[Income;|Education;] = Y + Y - Education;

e Want to consider whether 3 = gM.

o Seems unlikely: 3V is estimated with all variation in Education while
BM only uses residual variation

o It turns we can be more precise about this.



Omitted Variable “Bias” (2)

E[Income;|Education;, AFQT;] = Y + BM - Education; + 83 - AFQT;
E[Income;|Education;] = 8y + Y - Education;

o Consider the following auxiliary regression:

E[AFQT;|Education;] = dg + 01 - Education;



Omitted Variable “Bias” (2)

E[Income;|Education;, AFQT;] = Y + BM - Education; + 83 - AFQT;
E[Income;|Education;] = 8y + Y - Education;

o Consider the following auxiliary regression:

E[AFQT;|Education;] = dg + 01 - Education;

@ It then follows that:
E[Income;|Education;] = 8} + M - Educaton; + 8 - E[AFQT,|Education;])
=AY + B - Education; + 83 - (8o -+ 91 - Education;)
= (8" + 82" do) + (Bt + B2" - &1) - Education;

o So gy =AY + By - 61 # B (typically)



Omitted Variable “Bias” results

o gy =pM+ 8 -6
@ "Bias’ from omitting AFQT (B{j — ﬂ{v’) is 01 - ﬂé\/’.
@ Breakdown:

AFQT-Education AFQT-Education
relation is positive | relation is negative

(61 >0) (601 <0)

AFQT increases income

(8Y > 0)
AFQT decreases income

(83" <0)




Omitted Variable “Bias” results

o gy =pM+ 8 -6
@ "Bias’ from omitting AFQT (B{j — ﬂ{v’) is 01 - ﬂé\/’.
@ Breakdown:

AFQT-Education AFQT-Education
relation is positive | relation is negative

(61 >0) (601 <0)

AFQT increases income

(8 >0) sy > g BY < M
AFQT decreases income

(BY <0) By < M BY > pM




Omitted Variable “Bias” example

Outcome: ‘ Earnings ‘ AFQT

Constant | -75.68 -53.17 | -41.83

Education | 10.06 6.73 6.17
AFQT 0.54

10.06 = 6.73 + 0.54 - 6.17
ol = 8" + B4



Omitted Variable “Bias” discussion

@ OV"B" result is extremely useful in practice!

o Even though you don't observe 3 or 41, you can sometimes use the
OV"B" logic to get a sense of whether your “bias” is positive or
negative

@ “Bias” is a loaded word

e Sometimes, the correct regression is the one that omits a particular
variable!



“OVB for SEs"

e Adding/removing a variable from a regression doesn't just change the
point estimates of the other coefficients

o It changes the standard errors, too!

@ In case of homoskedasticity, there are two countervailing effects:



“OVB for SEs"

e Adding/removing a variable from a regression doesn't just change the
point estimates of the other coefficients

o It changes the standard errors, too!

@ In case of homoskedasticity, there are two countervailing effects:
e An additional variable reduces residuals and therefore shrinks SEs

o An additional variable reduces the amount of residual variation in X
and increases SEs

@ Overall impact on SEs is ambiguous: depends on the strength of
those two effects

@ With heteroskedasticy, this stark tradeoff is not technically
guaranteed, but in practice it still typically holds



“OVB for SEs” results

New X is very New X is not very
correlated with old X | correlated with old X
New X is a weak New X will increase

predictor of Y SE on old X Ambiguous

New X is a strong New X will decrease
predictor of Y Ambiguous SE on old X




“OVB for SEs" example

Outcome: A GDP

AG -0.87 -096 -0.83
(SE) (0.89) (1.04) (0.82)
Lagged A G 0.29
(0.76)
Lagged A GDP -0.14
(0.30)
Variance of i 20,322 20,287 19,927

Residual variation of A G 442 401 442
Note: constant term not shown

o Tip: Adding the lagged outcome variable is often a good trick — good
explanatory power, often not as correlated with other regressors



“OVB for SEs" takeaways

@ Takeaway: When considering controls, don’t just think about bias —
SEs matter, too!

@ A control that addresses bias might blow up the SE and make the
regression useless (if the Xs are highly correlated)

@ A control variable that doesn't address bias might reduce the SE and
be super-useful



Multicollinearity

@ Consider the following regression model:
Income; = 30 + 31 - Age; + Bz - CurrentYear; + 33 - BirthYear; + {;

e Modeling income as a linear trend of age, time, and birth cohort

@ Note that Age; = CurrentYear; - BirthYear;



Multicollinearity

@ Consider the following regression model:
Income; = 30 + 31 - Age; + Bz - CurrentYear; + 33 - BirthYear; + {;

e Modeling income as a linear trend of age, time, and birth cohort

@ Note that Age; = CurrentYear; - BirthYear;

@ This model cannot be estimated!
e In a model with perfect “multicollinarity” — one regressor is a linear
combination of other regressors — the coefficients are not uniquely
identified



Multicollinearity example

regress incwage year age birthyear, robust
note: year omitted because of collinearity

Linear regression Number of obs - 127,981
F(2, 127978) = 1302.51
Prob > F = 0.0000
R-squared = 0.D0240
Root MSE = 45443
Robust
incwage Coef. Std. Err. t P>|t| [25% Conf. Interval]
year 0 (omitced)
age 2243,377 55,70913 40,27 0.000 2134.188 2352.566
birthyear 1058.089 21.87837 48.36 0.000 1015.208 1100.97
_cons -2131519 44244 .88 -48.18 0.000 -2218239 -2044800




Intuition for multicollinearity

Income; = BAO + 51 - Age; + Bz - CurrentYear; + BA3 - BirthYear; + {;

@ Interpretation 1: holding constant
@ You can't look at a change in Age while keeping CurrentYear and
BirthYear constant

o If Age changes, one of the others must as well!

@ Interpretation 2: residual regression
o A regression of Age on CurrentYear and BirthYear will explain Age
perfectly; all residuals will be 0

o Therefore, there is no residual variation to identify the effect of Age on
Income — SE will be 0o



Intuition for Multicollinearity

. regress year age birthyear
Source ss df MS Number of obs = 557,953
E(2, 55795@) = -
Model 19775554.6 2 9887777.3 Prob > F = -
Residual @ 557,950 @ R-squared = 1.0000
Adj R-squared = 1.0000
Total 19775554.6 557,952 35.4431109 Root MSE = o
year | Coefficient Std. err. t P>|t| [95% conf. interval]
age - § = 5 - = -
birthyear 1 . . . = .
_cons -6.90e-09 o S 5 s =




Intuition for Multicollinearity

. summarize year_residual, detail

Residuals

Percentiles Smallest

1% -1.34e-11 -1.34e-11

5% -1.32e-11 -1.34e-11
10% -1.32e-11 -1.34e-11 Obs 557,953
25% -9.78e-12 -1.34e-11 Sum of wgt. 557,953
50% -6.5%-12 Mean 2.07e-14
Largest Std. dev. 2.03e-11

75% -6.14e-12 6.55e-11
90% 3.14e-11 6.55e-11 Variance 4.12e-22
95% 4.82e-11 6.55e-11 Skewness 2.041255

99% 6.53e-11 6.55e-11 Kurtosis 5.950411



Intuition for multicollinearity (2)

Income; = /3’0 + 5’1 - Age; + Bz - CurrentYear; + 33 - BirthYear; + {;
Age; = CurrentYear; — BirthYear;

@ Regression equation can be rewritten as:
Income; = (o + (Bz -+ Bl) -CurrentYear; + (,6A’3 — BAl) -BirthYear; + i
— ~—

3 2



Intuition for multicollinearity (2)

Income; = /3’0 + 5’1 - Age; + Bz - CurrentYear; + 33 - BirthYear; + {;

Age; = CurrentYear; — BirthYear;

Regression equation can be rewritten as:
Income; = fo + (BAQ + Bl) -CurrentYear; + (/33 — Bl) -BirthYear; + i;
—_——— ———
3 2
Each of these 2 sets of parameters are consistent with the results

abovg: . A
o f1=10=2 03=3

o Pi=2F=1p=4

o l.e. we don't know how to pick the single solution

The model is asking something nonsensical, and so OLS fails



Multicollinearity in practice

@ Your software will tell you if you have perfect multicollinearity
e You can “fix" it by removing one of the variables
@ This often comes up with “indicator variables” which we’ll discuss soon

e Before you proceed, you should pause to think through whether your
model makes sense...
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Multicollinearity in practice

@ Your software will tell you if you have perfect multicollinearity
e You can “fix" it by removing one of the variables
@ This often comes up with “indicator variables” which we’ll discuss soon
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Multicollinearity in practice

@ Your software will tell you if you have perfect multicollinearity
e You can “fix" it by removing one of the variables

@ This often comes up with “indicator variables” which we’ll discuss soon

e Before you proceed, you should pause to think through whether your
model makes sense...

@ Subtler issues arise with high-but-imperfect multicollinearity

@ Suppose your regressors are Age, YearsEducation, YearsWorking

o There is a very tight relationship between these 3 variables, though not
perfect because some people take gap years, maternity leave,
unemployment, etc.

o There will be little residual variation and likely high SEs!

e May want to consider dropping a variable



