#### Multivariate Regression

Econ 2560, Fall 2023

Prof. Josh Abel

(Chapters 6, 7.1)

- So far, we have estimated means conditional on 1 X variable
   E[Y|X] → E[Y|X<sub>1</sub>]
  - Linear
  - Nonlinear, including higher-order polynomials
  - Non-parametric
- Now will consider conditioning on multiple variables
  - $E[Y|X] \rightarrow E[Y|X_1, X_2, ..., X_K]$

- Why use multiple X variables?
  - Because you can!
    - Useful to have more information when estimating a mean
  - May strengthen the causal interpretation of coefficients on individual variables

- Have not discussed causation yet
  - Will discuss in much more detail later
- For now, suffice to say that this probably does not give the right causal effect:
  - $E[\text{Earnings}|\text{Education}] = \beta_0^U + \beta_1^U \cdot \text{Education}$
- Why not?

- Have not discussed causation yet
  - Will discuss in much more detail later
- For now, suffice to say that this probably does not give the right causal effect:
  - $E[\text{Earnings}|\text{Education}] = \beta_0^U + \beta_1^U \cdot \text{Education}$
- Why not?
  - Maybe more "connected" people get more schooling and have better access to jobs
  - Maybe "smarter" people find it easier to advance in school and excel at work
  - In either case, people with more education will have higher earnings, even without any causal relationship

 $E[\mathsf{Earnings}_i|X_i] = \beta_0^M + \beta_1^M \cdot \mathsf{Education}_i + \beta_2^M \cdot \mathsf{AFQT}_i$ 

$$E[\mathsf{Earnings}_i|X_i] = \beta_0^M + \beta_1^M \cdot \mathsf{Education}_i + \beta_2^M \cdot \mathsf{AFQT}_i$$

 $\bullet$  OLS chooses  $\hat{\beta}_0^M,\,\hat{\beta}_1^M,\,{\rm and}\,\,\hat{\beta}_2^M$  such that:

$$\begin{split} E[\hat{u}_i \cdot \mathsf{Education}_i] &= 0\\ E[\hat{u}_i \cdot \mathsf{AFQT}_i] &= 0\\ E[\hat{u}_i] &= 0\\ \end{split}$$
 where  $\hat{u}_i = Y_i - [\hat{\beta}_0^M + \hat{\beta}_1^M \cdot \mathsf{Education}_i + \hat{\beta}_2^M \cdot \mathsf{AFQT}_i] \end{split}$ 

$$E[\mathsf{Earnings}_i|X_i] = \beta_0^M + \beta_1^M \cdot \mathsf{Education}_i + \beta_2^M \cdot \mathsf{AFQT}_i$$

- Let's suppose AFQT is a perfect measure of how "smart" someone is
  Not true...
- How can we interpret  $\beta_1^M$ ?

$$E[\mathsf{Earnings}_i|X_i] = \beta_0^M + \beta_1^M \cdot \mathsf{Education}_i + \beta_2^M \cdot \mathsf{AFQT}_i$$

• If AFQT stays constant but Education increases by 1 year, how much does expected Earnings increase?

$$E[\mathsf{Earnings}_i|X_i] = \beta_0^M + \beta_1^M \cdot \mathsf{Education}_i + \beta_2^M \cdot \mathsf{AFQT}_i$$

- If AFQT stays constant but Education increases by 1 year, how much does expected Earnings increase?
- $\beta_1^M$ 
  - $\beta_1^M$  is the (predictive) effect of Education "holding AFQT constant"

$$E[\mathsf{Earnings}_i|X_i] = \beta_0^M + \beta_1^M \cdot \mathsf{Education}_i + \beta_2^M \cdot \mathsf{AFQT}_i$$

- If AFQT stays constant but Education increases by 1 year, how much does expected Earnings increase?
- $\beta_1^M$ 
  - $\beta_1^M$  is the (predictive) effect of Education "holding AFQT constant"
- Can think of a partial derivative from calculus:  $\frac{\partial E[\text{Earnings}_i|\text{Education}_i, \text{AFQT}_i]}{\partial E[\text{Earnings}_i|\text{Education}_i, \text{AFQT}_i]} = \beta_1^M$

 $\partial \mathsf{Education}_i$ 

 $E[\mathsf{Earnings}_i|X_i] = \beta_0^M + \beta_1^M \cdot \mathsf{Education}_i + \beta_2^M \cdot \mathsf{AFQT}_i$ 

• Can we think of  $\beta_1^M$  as being the causal effect of education now?

 $E[\mathsf{Earnings}_i|X_i] = \beta_0^M + \beta_1^M \cdot \mathsf{Education}_i + \beta_2^M \cdot \mathsf{AFQT}_i$ 

- Can we think of  $\beta_1^M$  as being the causal effect of education now?
- Probably not
  - Education might have associations with factors other than AFQT that drive  $\beta_1^M$
- Still, this is cleaner than the univariate case
  - At least  $\beta_1^M$  is (mostly) not being driven by AFQT

 $E[\mathsf{Earnings}_i | \mathsf{Education}_i, \mathsf{AFQT}_i] = \hat{\beta}_0^M + \hat{\beta}_1^M \cdot \mathsf{Education}_i + \hat{\beta}_2^M \cdot \mathsf{AFQT}_i$ 

 $E[\mathsf{Earnings}_i | \mathsf{Education}_i, \mathsf{AFQT}_i] = \hat{\beta}_0^M + \hat{\beta}_1^M \cdot \mathsf{Education}_i + \hat{\beta}_2^M \cdot \mathsf{AFQT}_i$ 

• Now consider the auxiliary regression of one regressor on another:  $E[\text{Education}_i | \text{AFQT}_i] = \hat{\alpha}_0 + \hat{\alpha}_1 \cdot \text{AFQT}_i,$ 

and let  $\hat{u}_i^{X_1}$  be the residual from this regression.

 $E[\mathsf{Earnings}_i | \mathsf{Education}_i, \mathsf{AFQT}_i] = \hat{\beta}_0^M + \hat{\beta}_1^M \cdot \mathsf{Education}_i + \hat{\beta}_2^M \cdot \mathsf{AFQT}_i$ 

• Now consider the auxiliary regression of one regressor on another:

 $E[\mathsf{Education}_i | \mathsf{AFQT}_i] = \hat{\alpha}_0 + \hat{\alpha}_1 \cdot \mathsf{AFQT}_i,$ 

and let  $\hat{u}_i^{X_1}$  be the residual from this regression.

• You can (but won't have to) show the following:

$$E[\mathsf{Earnings}_i|\hat{u}_i^{X_1}] = \kappa_0 + \hat{\beta}_1^M \cdot \hat{u}_i^{X_1}$$

$$E[Y_i|X_i] = \hat{\beta}_0^M + \hat{\beta}_1^M \cdot X_{1i} + \hat{\beta}_2^M \cdot X_{2i}$$

- In words: β<sub>1</sub><sup>M</sup> (or any other β<sup>M</sup>) from a multivariate regression can be estimated as follows:
  - "Residualize"  $X_1$  on all other regressors (call it  $\hat{u}_i^{X_1}$ )
  - Regress Y on  $\hat{u}_i^{X_1}$ : coefficient will be same  $\beta_1^M$  from above equation
- Key interpretation: β<sup>M</sup><sub>1</sub> measures the effect on Y of the portion of X<sub>1</sub> that cannot be explained by other variables
  - $\beta_1^M$  is "identified off of" the "residual variation" of  $X_1$
  - Similarly,  $\beta_2^M$  is identified off of the residual variation of  $X_2$

| Outcome: Annual earnings (1,000\$s) |                                              |  |  |  |  |
|-------------------------------------|----------------------------------------------|--|--|--|--|
| Univariate Multivariate             |                                              |  |  |  |  |
| -75.7                               | -53.2                                        |  |  |  |  |
| 10.1                                | 6.7                                          |  |  |  |  |
|                                     | 0.5                                          |  |  |  |  |
|                                     | Annual earnin<br>Univariate<br>-75.7<br>10.1 |  |  |  |  |

#### Income and education



Earnings by education

Years of education

# Income and education



Earnings by education

Years of education

## Income and education





Years of education

| Outcome: Annual earnings (1,000\$s) |                                              |  |  |  |  |
|-------------------------------------|----------------------------------------------|--|--|--|--|
| Univariate Multivariate             |                                              |  |  |  |  |
| -75.7                               | -53.2                                        |  |  |  |  |
| 10.1                                | 6.7                                          |  |  |  |  |
|                                     | 0.5                                          |  |  |  |  |
|                                     | Annual earnin<br>Univariate<br>-75.7<br>10.1 |  |  |  |  |

## Education by AFQT

#### Education by AFQT



AFQT percentile (1989)

# Education by AFQT



Education by AFQT

AFQT percentile (1989)

## Education by AFQT

#### Education by AFQT



AFQT percentile (1989)

## Residual regression

Earnings by education



Years of education (residual)

## Residual regression

Earnings by education



Years of education (residual)

## Residual regression

#### Earnings by education



Years of education (residual)

| Outcome: Annual earnings (1,000\$s) |                                              |  |  |  |  |
|-------------------------------------|----------------------------------------------|--|--|--|--|
| Univariate Multivariate             |                                              |  |  |  |  |
| -75.7                               | -53.2                                        |  |  |  |  |
| 10.1                                | 6.7                                          |  |  |  |  |
|                                     | 0.5                                          |  |  |  |  |
|                                     | Annual earnin<br>Univariate<br>-75.7<br>10.1 |  |  |  |  |

- Frequently, we don't have data on every variable we'd like
- For instance, suppose we don't observe AFQT for this regression:

 $E[\text{Income}_i | \text{Education}_i, \text{AFQT}_i] = \beta_0^M + \beta_1^M \cdot \text{Education}_i + \beta_2^M \cdot \text{AFQT}_i$ 

• We then have no choice but to estimate this equation:

 $E[\text{Income}_i | \text{Education}_i] = \beta_0^U + \beta_1^U \cdot \text{Education}_i$ 

- Want to consider whether  $\beta_1^U = \beta_1^M$ .
  - Seems unlikely:  $\beta_1^U$  is estimated with all variation in Education while  $\beta_1^M$  only uses residual variation
  - It turns we can be more precise about this.

 $E[\text{Income}_i | \text{Education}_i, \text{AFQT}_i] = \beta_0^M + \beta_1^M \cdot \text{Education}_i + \beta_2^M \cdot \text{AFQT}_i$ 

$$E[\text{Income}_i | \text{Education}_i] = \beta_0^U + \beta_1^U \cdot \text{Education}_i$$

• Consider the following auxiliary regression:

 $E[AFQT_i | Education_i] = \delta_0 + \delta_1 \cdot Education_i$ 

 $E[\text{Income}_i | \text{Education}_i, \text{AFQT}_i] = \beta_0^M + \beta_1^M \cdot \text{Education}_i + \beta_2^M \cdot \text{AFQT}_i$ 

$$E[\text{Income}_i | \text{Education}_i] = \beta_0^U + \beta_1^U \cdot \text{Education}_i$$

• Consider the following auxiliary regression:

$$E[AFQT_i | Education_i] = \delta_0 + \delta_1 \cdot Education_i$$

It then follows that:

$$\begin{split} E[\operatorname{Income}_i | \operatorname{Education}_i] &= \beta_0^M + \beta_1^M \cdot \operatorname{Educaton}_i + \beta_2^M \cdot E[\operatorname{AFQT}_i | \operatorname{Education}_i]) \\ &= \beta_0^M + \beta_1^M \cdot \operatorname{Education}_i + \beta_2^M \cdot (\delta_0 + \delta_1 \cdot \operatorname{Education}_i) \\ &= (\beta_0^M + \beta_2^M \cdot \delta_0) + (\beta_1^M + \beta_2^M \cdot \delta_1) \cdot \operatorname{Education}_i \\ \bullet & \operatorname{So} \ \beta_1^U = \beta_1^M + \beta_2^M \cdot \delta_1 \neq \beta_1^M \ (typically) \end{split}$$

• 
$$\beta_1^U = \beta_1^M + \beta_2^M \cdot \delta_1$$

• "Bias" from omitting AFQT  $(\beta_1^U - \beta_1^M)$  is  $\delta_1 \cdot \beta_2^M$ .

• Breakdown:

|                       | AFQT-Education       | AFQT-Education       |
|-----------------------|----------------------|----------------------|
|                       | relation is positive | relation is negative |
|                       | $(\delta_1 > 0)$     | $(\delta_1 < 0)$     |
| AFQT increases income |                      |                      |
| $(eta_2^M>0)$         |                      |                      |
| AFQT decreases income |                      |                      |
| $(eta_2^M < 0)$       |                      |                      |

• 
$$\beta_1^U = \beta_1^M + \beta_2^M \cdot \delta_1$$

• "Bias" from omitting AFQT  $(\beta_1^U - \beta_1^M)$  is  $\delta_1 \cdot \beta_2^M$ .

• Breakdown:

|                       | AFQT-Education          | AFQT-Education          |
|-----------------------|-------------------------|-------------------------|
|                       | relation is positive    | relation is negative    |
|                       | $(\delta_1 > 0)$        | $(\delta_1 < 0)$        |
| AFQT increases income |                         |                         |
| $(eta_2^M>0)$         | $\beta_1^U > \beta_1^M$ | $\beta_1^U < \beta_1^M$ |
| AFQT decreases income |                         |                         |
| $(eta_2^M < 0)$       | $\beta_1^U < \beta_1^M$ | $\beta_1^U > \beta_1^M$ |

### Omitted Variable "Bias" example

| Outcome:  | Earnings |        | AFQT   |
|-----------|----------|--------|--------|
| Constant  | -75.68   | -53.17 | -41.83 |
| Education | 10.06    | 6.73   | 6.17   |
| AFQT      |          | 0.54   |        |
|           |          |        |        |

$$10.06 = 6.73 + 0.54 \cdot 6.17$$
  
$$\beta_1^U = \beta_1^M + \beta_2^M \cdot \delta_1$$

- OV "B" result is extremely useful in practice!
  - Even though you don't observe  $\beta_2^M$  or  $\delta_1$ , you can sometimes use the OV "B" logic to get a sense of whether your "bias" is positive or negative
- "Bias" is a loaded word
  - Sometimes, the correct regression is the one that omits a particular variable!

- Adding/removing a variable from a regression doesn't just change the point estimates of the other coefficients
  - It changes the standard errors, too!
- In case of homoskedasticity, there are two countervailing effects:

- Adding/removing a variable from a regression doesn't just change the point estimates of the other coefficients
  - It changes the standard errors, too!
- In case of homoskedasticity, there are two countervailing effects:
  - An additional variable reduces residuals and therefore shrinks SEs
  - An additional variable reduces the amount of residual variation in  $\boldsymbol{X}$  and increases SEs
- Overall impact on SEs is ambiguous: depends on the strength of those two effects
- With heteroskedasticy, this stark tradeoff is not technically guaranteed, but in practice it still typically holds

|                   | New X is very           | New X is not very       |
|-------------------|-------------------------|-------------------------|
|                   | correlated with old $X$ | correlated with old $X$ |
| New X is a weak   | New X will increase     |                         |
| predictor of Y    | SE on old X             | Ambiguous               |
| New X is a strong |                         | New $X$ will decrease   |
| predictor of Y    | Ambiguous               | SE on old X             |

| Outcome: $\Delta$ GDP            |        |        |        |  |  |
|----------------------------------|--------|--------|--------|--|--|
| $\Delta$ G                       | -0.87  | -0.96  | -0.83  |  |  |
| (SE)                             | (0.89) | (1.04) | (0.82) |  |  |
| Lagged $\Delta$ G                |        | 0.29   |        |  |  |
|                                  |        | (0.76) |        |  |  |
| Lagged $\Delta$ GDP              |        |        | -0.14  |  |  |
|                                  |        |        | (0.30) |  |  |
| Variance of $\hat{u}$            | 20,322 | 20,287 | 19,927 |  |  |
| Residual variation of $\Delta$ G | 442    | 401    | 442    |  |  |

Note: constant term not shown

• Tip: Adding the lagged outcome variable is often a good trick – good explanatory power, often not as correlated with other regressors

- Takeaway: When considering controls, don't just think about bias SEs matter, too!
- A control that addresses bias might blow up the SE and make the regression useless (if the Xs are highly correlated)
- A control variable that doesn't address bias might reduce the SE and be super-useful

• Consider the following regression model:

$$\mathsf{Income}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot \mathsf{Age}_i + \hat{\beta}_2 \cdot \mathsf{CurrentYear}_i + \hat{\beta}_3 \cdot \mathsf{BirthYear}_i + \hat{u}_i$$

Modeling income as a linear trend of age, time, and birth cohort
Note that Age<sub>i</sub> = CurrentYear<sub>i</sub> - BirthYear<sub>i</sub>

• Consider the following regression model:

$$\mathsf{Income}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot \mathsf{Age}_i + \hat{\beta}_2 \cdot \mathsf{CurrentYear}_i + \hat{\beta}_3 \cdot \mathsf{BirthYear}_i + \hat{u}_i$$

- Modeling income as a linear trend of age, time, and birth cohort
- Note that Age<sub>i</sub> = CurrentYear<sub>i</sub> BirthYear<sub>i</sub>
- This model cannot be estimated!
  - In a model with **perfect "multicollinarity"** one regressor is a linear combination of other regressors the coefficients are not uniquely identified

## Multicollinearity example

#### . regress incwage year age birthyear, robust note: year omitted because of collinearity

| Linear | regression | Number of obs | = | 127,981 |
|--------|------------|---------------|---|---------|
|        |            | F(2, 127978)  | = | 1302.51 |
|        |            | Prob > F      | = | 0.0000  |
|        |            | R-squared     | = | 0.0240  |
|        |            | Root MSE      | = | 49443   |
|        |            |               |   |         |

| incwage                           | Coef.                                 | Robust<br>Std. Err.                           | t                        | P> t                    | [95% Conf.                       | Interval]                       |
|-----------------------------------|---------------------------------------|-----------------------------------------------|--------------------------|-------------------------|----------------------------------|---------------------------------|
| year<br>age<br>birthyear<br>_cons | 0<br>2243.377<br>1058.089<br>-2131519 | (omitted)<br>55.70913<br>21.87837<br>44244.88 | 40.27<br>48.36<br>-48.18 | 0.000<br>0.000<br>0.000 | 2134.188<br>1015.208<br>-2218239 | 2352.566<br>1100.97<br>-2044800 |

 $\textit{Income}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot \mathsf{Age}_i + \hat{\beta}_2 \cdot \mathsf{CurrentYear}_i + \hat{\beta}_3 \cdot \mathsf{BirthYear}_i + \hat{u}_i$ 

- Interpretation 1: holding constant
  - You can't look at a change in Age while keeping CurrentYear and BirthYear constant
  - If Age changes, one of the others must as well!
- Interpretation 2: residual regression
  - A regression of Age on CurrentYear and BirthYear will explain Age perfectly; all residuals will be 0
  - Therefore, there is no residual variation to identify the effect of Age on Income  $\rightarrow$  SE will be  $\infty$

| Source    | SS          | df        | MS        | Numbe   | r of obs        | = 557,953    |
|-----------|-------------|-----------|-----------|---------|-----------------|--------------|
| Mode]     | 19775554 6  | 2         | 9887777   | - F(2,  | 557950)         |              |
| Residual  | 0           | 557,950   | (         | 0 R-squ | ared            | = 1.0000     |
| Total     | 19775554.6  | 557,952   | 35.443110 | 9 Root  | -squared<br>MSE | = 1.0000     |
| year      | Coefficient | Std. err. | t         | P> t    | [95% conf       | f. interval] |
| age       | 1           |           |           |         |                 |              |
| birthyear | 1           |           |           |         |                 |              |
|           |             |           |           |         |                 |              |

#### Intuition for Multicollinearity

#### . summarize year\_residual, detail

| Residuals |             |           |             |          |  |
|-----------|-------------|-----------|-------------|----------|--|
|           | Percentiles | Smallest  |             |          |  |
| 1%        | -1.34e-11   | -1.34e-11 |             |          |  |
| 5%        | -1.32e-11   | -1.34e-11 |             |          |  |
| 10%       | -1.32e-11   | -1.34e-11 | Obs         | 557,953  |  |
| 25%       | -9.78e-12   | -1.34e-11 | Sum of wgt. | 557,953  |  |
| 50%       | -6.59e-12   |           | Mean        | 2.07e-14 |  |
|           |             | Largest   | Std. dev.   | 2.03e-11 |  |
| 75%       | -6.14e-12   | 6.55e-11  |             |          |  |
| 90%       | 3.14e-11    | 6.55e-11  | Variance    | 4.12e-22 |  |
| 95%       | 4.82e-11    | 6.55e-11  | Skewness    | 2.041255 |  |
| 99%       | 6.53e-11    | 6.55e-11  | Kurtosis    | 5.950411 |  |
|           |             |           |             |          |  |

### Intuition for multicollinearity (2)

$$\mathsf{Income}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot \mathsf{Age}_i + \hat{\beta}_2 \cdot \mathsf{CurrentYear}_i + \hat{\beta}_3 \cdot \mathsf{BirthYear}_i + \hat{u}_i$$

$$Age_i = CurrentYear_i - BirthYear_i$$

• Regression equation can be rewritten as: Income<sub>i</sub> =  $\hat{\beta}_0 + \underbrace{(\hat{\beta}_2 + \hat{\beta}_1)}_{3}$ ·CurrentYear<sub>i</sub> +  $\underbrace{(\hat{\beta}_3 - \hat{\beta}_1)}_{2}$ ·BirthYear<sub>i</sub> +  $\hat{u}_i$ 

## Intuition for multicollinearity (2)

$$\mathsf{Income}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot \mathsf{Age}_i + \hat{\beta}_2 \cdot \mathsf{CurrentYear}_i + \hat{\beta}_3 \cdot \mathsf{BirthYear}_i + \hat{u}_i$$

$$Age_i = CurrentYear_i - BirthYear_i$$

- Regression equation can be rewritten as: Income<sub>i</sub> =  $\hat{\beta}_0 + \underbrace{(\hat{\beta}_2 + \hat{\beta}_1)}_{3}$ ·CurrentYear<sub>i</sub> +  $\underbrace{(\hat{\beta}_3 - \hat{\beta}_1)}_{2}$ ·BirthYear<sub>i</sub> +  $\hat{u}_i$
- Each of these 2 sets of parameters are consistent with the results above:

• 
$$\hat{\beta}_1 = 1$$
,  $\hat{\beta}_2 = 2$ ,  $\hat{\beta}_3 = 3$ 

• 
$$\hat{\beta}_1 = 2, \ \hat{\beta}_2 = 1, \ \hat{\beta}_3 = 4$$

- I.e. we don't know how to pick the single solution
- The model is asking something nonsensical, and so OLS fails

• Your software will tell you if you have perfect multicollinearity

- You can "fix" it by removing one of the variables
  - This often comes up with "indicator variables" which we'll discuss soon
- Before you proceed, you should pause to think through whether your model makes sense...

• Your software will tell you if you have perfect multicollinearity

- You can "fix" it by removing one of the variables
  - This often comes up with "indicator variables" which we'll discuss soon
- Before you proceed, you should pause to think through whether your model makes sense...
- Subtler issues arise with high-but-imperfect multicollinearity

- Your software will tell you if you have perfect multicollinearity
  - You can "fix" it by removing one of the variables
    - This often comes up with "indicator variables" which we'll discuss soon
  - Before you proceed, you should pause to think through whether your model makes sense...
- Subtler issues arise with high-but-imperfect multicollinearity
- Suppose your regressors are Age, YearsEducation, YearsWorking

- Your software will tell you if you have perfect multicollinearity
  - You can "fix" it by removing one of the variables
    - This often comes up with "indicator variables" which we'll discuss soon
  - Before you proceed, you should pause to think through whether your model makes sense...
- Subtler issues arise with high-but-imperfect multicollinearity
- Suppose your regressors are Age, YearsEducation, YearsWorking
  - There is a very tight relationship between these 3 variables, though not perfect because some people take gap years, maternity leave, unemployment, etc.
  - There will be little residual variation and likely high SEs!
  - May want to consider dropping a variable